Heavy metals and chronic diseases: what therapeutic approaches?

Peter Jennrich
IBCMT - International Board of Clinical Metal Toxicology KMT
German Medical Association of Clinical Metal Toxicology
www.tierversuchsfreie-medizin.de
Calcium is the most abundant metal in the human body. The average adult body contains about 1 kg. Calcium is important for structure and function of the human body.

Structure
- 99% Calcium in the bones and teeth

Function
- Secondary messenger
- Energy metabolism
- Neuromuscular junction
Calcium - a secondary messenger

As a secondary messenger calcium is important for the cell-regulation by hormones and transmitters

This is important for:

- muscle contraction
- synthesis and secretion of neurotransmitters / hormones
- gene-expression
- regulation of enzyme activity
- regulation of ion pumps

Peter Jennrich - International Board of Clinical Metal Toxicology
Calcium - a secondary messenger

Hormones and transmitters change membrane receptors

- opens plasma membrane calcium channels
- stimulate the release of calcium ions (Ca2+) from intracellular stores (>the endoplasmic reticulum)
Calcium uptake in mitochondria

The Ca(2+) uptake can be divided into the following three steps:

1. Ca(2+) movement from the endoplasmic reticulum to the outer mitochondrial membrane (OMM)
2. Ca(2+) transport through the OMM
3. Ca(2+) transport through the inner mitochondrial membrane (IMM)

Cell Calcium (Scotland) Nov-Dec 2002, 32(5-6) p363-77
The intramitochondrial Ca(2+) controls the ATP production by oxidative phosphorylation.

Cell-signals are linked with the ATP production via the Ca(2+) oscillations.
Energized mitochondria must expend a significant amount of energy to transport Ca(2+) against its electrochemical gradient from the matrix space to the external space.

Am J Physiol (United States), May 1990, 258(5 Pt 1) pC755-86

\[\text{Ca}_{\text{mit}}^{2+} \xrightarrow{\text{ATP}} \text{Ca}_{\text{cyt}}^{2+} \xrightarrow{\text{ATP}} \text{Ca}_{\text{ER}}^{2+} \xrightarrow{\text{ATP}} \text{Ca}_{\text{ext}}^{2+} \]

A loss of ATP leads to a loss of calcium homeostasis

A loss of calcium homeostasis leads to a loss of ATP
Accumulation of calcium into mitochondria play a key role as a trigger to mitochondrial pathology, especially when the calcium uptake is accompanied by another stressor, in particular ROS or RNS.
EMF causes altering of intracellular \(\text{Ca}^{2+} \) homeostasis

This mode of action was further supported by hundreds of studies showing microwave changes in calcium fluxes and intracellular calcium [Ca2+]i signaling.

Pall M. Rev Environ Health. 2015 Apr 16

Extremely low-frequency electromagnetic fields (ELF-EMF) causes various biological effects through altering intracellular calcium homeostasis.

Together, these findings indicate that ELF-EMF exposure specifically influences the intracellular calcium dynamics of neurons via a calcium channel-independent mechanism.

Peter Jennrich - International Board of Clinical Metal Toxicology
A loss of calcium homeostasis leads to a loss of ATP. A loss of ATP leads to a loss of calcium homeostasis. This culminates in cell dysfunction and delayed cell death.
Mimicry of toxic metals

Toxic metals (Al, As, Cd, Hg, Pb,..) can displace essential metals (Mg, Ca, Fe and Zn)

The consequence is a loss of function from small molecules, enzymes and nucleic acids.

Al, Hg, Pb, Cd, Ni, Ti,..

Loss of mitochondrial function

ROS	NO	ONOO-
MMP | Cytochrom C Oxidase | OXPHOS | LPX

Toxic mimikry

Ca$^{2+}$ homeostasis

mtDNA | nDNA

Peter Jennrich - International Board of Clinical Metal Toxicology
Toxic metals and EMF disturbance of calcium homeostasis can lead to impaired mitochondrial ATP synthesis, collapse of mitochondrial membrane potential, and culminating in cell dysfunction and delayed cell death.
Working hypothesis:

The dysregulation of CH is a combined effect of toxic metals and EMF

Reduction of concentrations of toxic metals

Reduction of CH-dysregulation

If you reduce the concentration of TM, you reduce the EMF effects on cells
Metal-binding agents

- EDTA
- DMPS
- DTPA
- DMSA
- As
- Al
- Cd
- Hg
- Ni
- Pb
- Ti

Peter Jennrich - International Board of Clinical Metal Toxicology
Secondary mitochondrial disease caused by toxic metals

- Severe CFS
- Loss of memory and of cognitive function
- Dermatitis
- Diminished ability to perform activities of daily living (ADL)

Challenge Test with Chelating agents i.v
(zinc trisodium diethylenetriaminepentaacetate - ZnDTPA)
(dimercaptopropanesulfonate - DMPS)

<table>
<thead>
<tr>
<th>Potentially Toxic Metal</th>
<th>Test Result (mcg/g Creatin)</th>
<th>Normal Range (unprovoked)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>62,69</td>
<td>< 17</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1,56</td>
<td>< 0,5</td>
</tr>
<tr>
<td>Lead</td>
<td>44,49</td>
<td>< 1</td>
</tr>
<tr>
<td>Mercury</td>
<td>17,61</td>
<td>< 1</td>
</tr>
<tr>
<td>Nickel</td>
<td>11,44</td>
<td>< 2,1</td>
</tr>
</tbody>
</table>

ATP intracellular: 0,69 µM (reference value: > 2µM)

Peter Jennrich - International Board of Clinical Metal Toxicology
Secondary mitochondrial disease caused by toxic metals

Therapy:
- 11 x DMPS/ZnDTPA i.v.
- 28 x 3gr Na$_2$Mg-EDTA i.v.
- 7 x 200mg DMSA i.v.
- 4 x DMPS i.v.
- HOT/UVB

Symptoms after 12 months of therapy:
- Improvement of memory
- Improvement to perform activities of daily living (ADL)
- Improvement in quality of life
- Opening a practice for psychotherapy

ATP intracellular: 2,01 µM (reference value: > 2µM)
Metal-binding agents

Standard medical treatment:

Use for acute metal intoxication

Not used for the treatment of chronic metal burden from the environment

Peter Jennrich - International Board of Clinical Metal Toxicology
The Trial to Assess Chelation Therapy (TACT) is a randomized, double blind, placebo-controlled, 2×2 factorial clinical trial which is sponsored by the National Institute of Health (NIH).

It was designed to determine the safety and efficacy of EDTA chelation therapy for individuals with coronary artery disease (CAD) and prior myocardial infarction (MI).

IMPORTANCE:

Chelation therapy with disodium EDTA has been used for more than 50 years to treat atherosclerosis without proof of efficacy.

OBJECTIVE:

To determine if an EDTA-based chelation regimen reduces cardiovascular events.
CONCLUSIONS AND RELEVANCE:

Among stable patients with a history of MI, use of an intravenous chelation regimen with disodium EDTA, compared with placebo, modestly reduced the risk of adverse cardiovascular outcomes, many of which were revascularization procedures. These results provide evidence to guide further research but are not sufficient to support the routine use of chelation therapy for treatment of patients who have had an MI.

EDTA binds no mercury and no arsenic

The cardiovascular effects of arsenic, lead and mercury exposure and its impact on cardiovascular mortality need to be included in the diagnosis and the treatment of CVD."
It can be assumed that patients who participated the TACT and had an arsenic and/or mercury load would have benefited from a combination of EDTA and DMPS or DMSA.

Nevertheless, the TACT is a milestone in the recognition of the therapeutic use of chelating substances beyond the treatment of acute metal poisoning.

The use of metal-binding agents should be recognized as necessary for the treatment of diseases which are linked with chronic metal burden from the environment.
CONCLUSION:
The use of chelating substances for the treatment of chronic metal intoxication is a novel therapeutic approach for patients with CFS, MCS and EHS.